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Abstract. We study a totally asymmetric simple exclusion model with open boundary
conditions and a local inhomogeneity in the bulk. It consists of a one-dimensional lattice
with particles hopping stochastically with equal rates to the right at all lattice sites except one
where the jump rate is different. Approximate stationary-state solutions and phase diagrams are
obtained and compared with Monte Carlo simulation results.

1. Introduction

One-dimensional asymmetric simple exclusion processes (ASEPs) have received much
attention recently [1]. ASEP is a lattice model of particles hopping stochastically and
interacting through hard-core exclusion. It has been used to describe various physical
phenomena such as gel electrophoresis [2, 3], interface growth [4], the formation of shocks
[5, 11], biopolymerization [6, 7], and directed polymers in a random medium [8]. Exact
solutions have been obtained for stationary states of some asymmetric exclusion models
with various boundary conditions [9–14].

So far the stationary states have been calculated exactly for the asymmetric exclusion
models with translational symmetry in the bulk. The introduction of a stationary defect,
changing the rate of stochastic motion at one particular bond, makes the subject very
complicated. Such models with periodic boundary conditions have been studied numerically
[15, 16]. Also exact results exist for an exclusion model with stochastic defect, parallel
dynamics, and deterministic hopping in the bulk [17, 18]. However, no exact solutions are
known for the ASEPs with random sequential dynamics.

In this paper we consider a totally asymmetric exclusion model with open boundary
conditions. Each sitei of a one-dimensional lattice of sizeN is either occupied by a
particle (occupation numberli = 1), or empty (li = 0). During the infinitesimal time step
dt , each particle belonging to the sites 16 i 6 N−1 has a probability dt of jumping to the
next right site if this neighbouring site is empty. The particles are injected at the left end
(i = 1) with probabilityα dt if site 1 is empty and removed from the right end (i = N ) with
probability β dt if this site is occupied. Furthermore, a defective bond is inserted between
sitesk andk + 1 where the particles hop stochastically fromk to k + 1 with a probability
q dt . We consider both the casesq < 1 andq > 1. The former implies that the particles
hop more slowly across the defect link, while the latter means that they hop faster. When
q = 1 we have an ASEP solved exactly [9, 14]. In this paper we solve the introduced
model approximately and compare our solution with exact results (q = 0, andq = 1) and
Monte Carlo simulations.
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2. Approximate solutions

To simplify the calculations we assume that lattice sizeN is a large even number and we
put a defect bond in the middle of the chain, i.e. we assume that the defect link connects the
sitesk = N/2 andk+ 1= N/2+ 1. We expect the results for any position of the impurity
a distance O(N) from the ends will be qualitatively the same. Before solving the problem
for generalq we give the exact result for the limiting caseq = 0 and quote the exact result
for q = 1, which will be used as criteria of validity of our approximation scheme.

2.1. Exact results

Whenq = 0 the solution is trivial. In stationary state the current is not passing anywhere
(J = 0) so that the density of the particles at the left half of the chain before the impurity
is equal 1, and the density of the particles at the right half of the system after the impurity
is 0. These results can be summarized as follows

li = 1 16 i 6 k
li = 0 k + 16 i 6 N
J = 0.

(1)

The case ofq = 1 is exactly solvable and here we recall some of the results [9, 14] that
will be used in the solution for generalq. There are three phases in the limit ofN →∞.
Whenα > 1

2 andβ > 1
2 we have a maximal-current phase with

l1 = 1

4β

lN = 1− 1

4α
J = 1

4

lbulk = 1
2

(2)

wherel1 is the particle density at the first site andlN is the particle density at the last site
of the lattice, andlbulk is the density in the bulk of the chain far away from the boundaries.

The conditionsα > β andβ < 1
2 describe a high-density phase where

l1 = 1− β(1− β)/α
lN = 1− β
J = β(1− β)
lbulk = 1− β.

(3)

Whenα < β andα < 1
2 we have a low-density phase. The current and densities of the

particles at the first and last sites are the following

l1 = α
lN = α(1− α)/β
J = α(1− α)
lbulk = α.

(4)
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2.2. Approximate solution for generalq

The one-dimensional lattice of sizeN with the defect bond in the middle can be thought of
as two one-dimensional lattices each of sizeN/2 connected by the defect bond. Then the
left part is a totally asymmetric exclusion model without impurity with the rate of injection
of the particlesα and the rate of removal of the particlesβeff, where

βeff = q(1− lk+1). (5)

Similarly, the right part is a totally asymmetric exclusion model without impurity with
the rate of injection of the particlesαeff and the rate of leaving of the particlesβ, where

αeff = qlk. (6)

A similar idea has been successfully used recently in the investigation of the phase
transitions in the one-dimensional reaction-diffusion model [19].

In the steady-state the current through the left lattice, right lattice, and defect bond
should be the same. To find the current through the defect link we use a simple mean-field
approximation which consists of the assertion that

J = qlk(1− lk+1). (7)

There is also a particle–hole symmetry in the system. Since particles are injected at the
left end with probabilityα and removed at the right end with probabilityβ, it is equivalent
to say that holes are injected at the right end with probabilityβ and removed at the left end
with probabilityα. Because of this particle–hole symmetry, one always has

li(α, β, q) = 1− lN+1−i (β, α, q). (8)

In our representation thekth site plays a role of the last site of the left lattice while the
(k+ 1)th site is the first site of the right lattice. Then using equations (2)–(4), (7), (8), and
exact large-N results for the left and right lattices one can find the following solutions.

When q > 1 we have the phase diagram shown in figure 1(a). Similarly to the case
without local inhomogeneity (q = 1), it consists of three phases. The caseα > 1

2 and
β > 1

2 corresponds to a maximal-current phase in which

lk = 1

2
√
q

lk+1 = 1− 1

2
√
q

J = 1
4

αeff = √q/2
βeff = √q/2
lbulk,left = lbulk,right = 1

2.

(9)

One can analyse the solution in the limiting caseq → ∞ where we havelk → 0 and
lk+1 → 1. These limits seem reasonable because in the maximal-current phase the system
has enough time to empty the site before the defect bond and fill the site after the defect
bond. Also, in the caseq = 1 our solution giveslk = lk+1 = 1

2, the same results as in the
case of exact solution for ASEP without defect bond [9, 14].
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Figure 1. Phase diagrams obtained from the approximate solutions. Heavy full lines are first-
order phase transition lines, light full lines are continuous transition lines. (a) q > 1; (b) q < 1.
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The conditionsα > β andβ < 1
2 describe a high-density phase, where

lk = 1− β
lk+1 = 1− β/q
J = β(1− β)
αeff = q(1− β)
βeff = β
lbulk,left = lbulk,right = 1− β.

(10)

In the limit q →∞ the density atkth site is unchanged, butlk+1→ 1. These limiting
results can be understood as follows. In the high-density phase the slowest rate-determining
process is the removal of the particles at the right end, that is why the site after the impurity
will be filled, but the density at the site preceding the defect bond will not decrease to
zero. In this phase the particles are ‘stuck’ inside the chain. Also, forq = 1 we have
lk = lk+1 = 1 − β which is in agreement with exact results for the asymmetric simple
exclusion model without local inhomogeneity.

Similarly, β > α andα < 1
2 describe the low-density phase. One can find the following

results in this phase

lk = α/q
lk+1 = α
J = α(1− α)
αeff = α
βeff = q(1− α)
lbulk,left = lbulk,right = α.

(11)

In the low-density phase the rate of injection of the particles is the limiting process, so
there is a shortage of the particles inside the chain. Thus, in the limitq →∞ we havelk+1

unchanged andlk → 0. Also, for q = 1 we again reproduce the known exact results for
the ASEP without impurity (lk = lk+1 = α).

The phase boundaryα = β < 1
2 is a coexistence line of first-order phase transitions and

we may expect a linear density profile (except in the area close to the local inhomogeneity),
similarly to the case of the asymmetric exclusion model without a defect bond. The other
phase boundaries correspond to continuous transitions.

The phase diagram forq < 1 is shown in figure 1(b). It also has three phases as in the
caseq > 1 but the locations of some phase boundaries are changed.

The conditionsα > q/(q+1) andβ > q/(q +1) determine the maximal-current phase
here. The solutions for this phase are the following

lk = 1/(q + 1)

lk+1 = q/(q + 1)

J = q/(q + 1)2

αeff = q/(q + 1)

βeff = q/(q + 1)

lbulk,left = 1/(q + 1)

lbulk,right = q/(q + 1).

(12)

In the limit q = 0 the current goes to zero,lk = 1 andlk+1 = 0, in agreement with the
exact solutions (see equations (1)). Whenq = 1 we recover the exact results for the ASEP
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without local inhomogeneity:J = 1
4, lk = lk+1 = 1

2.
The high-density phase is defined here byα > β andβ < q/(q + 1). The results in

this phase are the same as for the high-density phase withq > 1:

lk = 1− β
lk+1 = 1− β/q
J = β(1− β)
αeff = q(1− β)
βeff = β
lbulk,left = lbulk,right = 1− β.

(13)

The results for the low-density phase (defined byβ > α andα < q/(q + 1)) are also
similar to those of the low-density phase withq > 1:

lk = α/q
lk+1 = α
J = α(1− α)
αeff = α
βeff = q(1− α)
lbulk,left = lbulk,right = α.

(14)

Also, the coexistence lineα = β < q/(q+1) is the locus of first-order phase transitions.
The other phase boundaries are continuous.

3. Monte Carlo simulations and discussion

So far our general approximate solution gave correct results at all limiting cases where
exact results are known. To investigate the applicability of our approach for general
q we tested our approximation with Monte Carlo simulations. First we compared our
approximate solution with the exact solution for the asymmetric simple exclusion model
without stochastic impurity (q = 1) (see figure 2). There is a slight deviation in our density
profile from the exact density profile forN = 200, but as we checked for largerN this
difference decreases and we expect that in the limitN →∞ our approximate solution gives
the exact solution for the model without local inhomogeneity.

When q > 1 there is very good qualitative and quantitative agreement between the
density profiles given by our approximation and Monte Carlo results in the high-density
and low-density phases (see figures 3(a) and (b)). The results for the maximal-current
phase (q > 1) are still qualitatively the same, but there are deviations in the region near
the local inhomogeneity (figure 3(c)). That is a consequence of our mean-field treatment
of correlations near the defect bond. Obviously, in reality the correlations are larger than
predicted, and that makes the density in the left-hand part larger and that in the right-hand
part smaller than our approximation predicts. The positions of the phase boundaries are
determined exactly by our approach (figure 3(d)). Also, our approximation fails at the
coexistence line (α = β < 1

2). Our approach predicts the existence of two discontinuities in
the density profile, both of them are at the middle of the chain. One of them is a result of
the local defect, another one is a jump in the bulk density between the left and right parts
of the system (figure 3(d)). The latter discontinuity would exist even for theq = 1 case.
The Monte Carlo density profile is linear (except close to the local inhomogeneity) due to
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Figure 2. Density profiles for the system of sizeN = 200 without the defect bond and
α = β = 1. The squares are used to plot the density profile from Monte Carlo simulation which
is the same as the exact density profile in this case. Monte Carlo densities are results of averaging
over 5× 109 Monte Carlo steps. Full curves are our approximation. The equations (43) and
(44) of [9] have been used in the calculation of our approximate density profiles.

the fact that along the coexistence line, there is a superposition of states with the jump in
the bulk density at an arbitrary position [9].

We have a similar picture for the caseq < 1 (figures 4(a)–(d)). Again the agreement
between our predictions and Monte Carlo simulations is quite good in the high- and low-
density phases (but not as good as for the same phases in the caseq > 1). The biggest
deviations can be found in the maximal-current phase. For example, in the caseq = 1

2 we
predict the phase boundary between the maximal-current phase and the high-density phase
to be atβ = 1

3 while Monte Carlo simulations giveβ ≈ 0.38. The reason for that is,
probably, the fact that the density profile at all lattice sites is influenced by the behaviour of
the system near the local inhomogeneity. In the caseq > 1 only the density near the defect
bond is influenced by the impurity, and that is why our approximation gives better results
for q > 1. Despite these facts, our approach still calculates qualitatively correct density
profiles.

4. Summary and conclusions

We presented a one-dimensional asymmetric simple exclusion model with open boundary
conditions and with a stochastic impurity in the bulk. The model was solved using a simple
approximation. Our scheme consisted of two parts. First, we represented our system as two
systems without the stochastic defect, connected at the position of the local inhomogeneity.
The second assumption was the approximation of mean-field behaviour for sitesk andk+1
only (recall, that the defect bond is situated between these two sites) (equation (7)). We
point out that the first statement alone suffices to obtain a qualitative picture, but to get
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Figure 3. Density profiles for the system of sizeN = 200 with q = 10. The squares indicate
the Monte Carlo simulation results. Full curves are our approximation. The equations (43)
and (44) of [9] have been used in the calculation of our approximate density profiles. Monte
Carlo densities are results of averaging over 5× 109 Monte Carlo steps. (a) α = 0.3, β = 0.8;
(b) α = 0.8, β = 0.3; (c) α = 0.8, β = 0.8; (d) α = 0.3, β = 0.3.
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Figure 3. (Continued)
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Figure 4. Density profiles for the system of sizeN = 200 with q = 0.5. The squares are
the Monte Carlo simulation results. Full curves are our approximation. The equations (43) and
(44) of [9] have been used in the calculation of our approximate density profiles. Monte Carlo
densities are results of averaging over 109 Monte Carlo steps. (a) α = 0.8, β = 0.8; (b) α = 1

3 ,
β = 0.8; (c) α = 0.3, β = 0.3; (d) α = 0.8, β = 0.38.
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Figure 4. (Continued)
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explicit formulae we had to make the second assumption. This second assumption is the
real source of differences from Monte Carlo simulation results.
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